Improving reading strategies through peer response

Jungwan Yang
(Seoul National Univ. of Science and Technology)

This study is aimed at investigating how peer responses of Korean high school students work to improve students’ metacognitive reading strategies. Depending on a quantitative research method and analysis, the finding of this investigation indicates that the peer response group employs more metacognitive reading strategies than the non-peer response group. In other words, this result points out that use of metacognitive reading strategies can be increased through peer response activities, which proves peer response plays an important role in enriching reading strategies. Considering the main result of this study, it is certain that Korean high school students need to be allowed opportunities to explore various reading strategies in English reading practice. Finally, this study discusses the finding from more educationally theoretical perspectives of interaction, Vygotsky’s social ZPD concept, and integrative teaching methodology.

I. INTRODUCTION

Recently many language researchers have focused on reading strategies. They have paid attention to the importance of reading strategies which make language learners aware of the purpose and meaning of reading, which finally helps them to become good readers by enhancing overall language ability (Oxford, 2004). It is certain that metacognitive, cognitive, and socio-affective strategies are important in language learning. However this study focuses on metacognitive reading strategies because students without metacognitive approaches are learners without direction or opportunity to monitor their
progress, accomplishments, and future directions (O’Malley, Chamot, & Kupper, 1989). A metacognitive approach makes students aware of the purpose of reading to activate, monitor, regulate, and make sense out of text, which finally helps students to become skilled readers (Sheorey & Mokhtari, 2001). It also leads language learners to be independent in their learning, being aware of their learning process.

The importance of metacognitive strategies has been positively studied in terms of constructively responsive readers using them (Anderson, 2003; Pressley & Afflerbach, 1995; Yeo, 2006). This theory is grounded on that idea that learners can benefit from interaction to enhance their learning achievements (Mooney, 2000). In short, successful language learners must have meaningful opportunities to interact with other interactants such as a teacher, peers and texts. In this context, peer collaboration has also been discussed from the view of social constructionism in which knowledge is negotiated and best acquired through interaction (Kurt & Atay, 2007). That is, peer collaboration is regarded to provide learners with an opportunity to read or write their drafts and to discuss them with a peer audience while their products or activities are taking shape. Classroom discussion as a peer response also can be a positive aspect in supporting all phases of the language learning process (Reid, 1994).

This study aims to explore how these two important fields in language learning, namely metacognitive reading strategies and peer collaboration, are interconnected to enhance learners’ metacognitive reading strategy. This study is in the same vain with the fact that reading strategies are conscious and intended and controllable actions; therefore, readers’ comprehension abilities can be advanced by extending reading strategies (Philip, 2005). In short, this study is designed to investigate how Korean high school students perform metacognitive reading strategies through employing peer response. The following questions were framed for the research:

1) How do Korean high school students perform metacognitive strategies while reading English texts?
2) How are peer response activities related to learners’ reading meta-cognitive strategies?
II. LITERATURE REVIEW

1. Metacognitive Reading Strategy

There are various definitions of metacognitive strategies, but O’Malley, et. al (1989) highlights the importance of metacognition in contrast to cognitive strategies; cognitive strategies are more directly related to individual learning tasks and contain direct manipulation or transformation of the learning materials, while metacognitive strategies are more involved with thinking about the learning process, planning for studying, monitoring of comprehension, and self-evaluation of learning after the language activity is completed. Carrell (1998) also summarized metacognitive strategies in reading: (a) clarifying the purposes of reading—understanding both the explicit and implicit task demands; (b) identifying the important aspects of a message; (c) focusing attention on the major content; (d) monitoring ongoing activities to comprehend; (e) engaging in self-questioning to determine whether goals are being achieved, and (f) taking corrective action when comprehension fails.

Furthermore, other studies have continued to show the role of metacognitive strategies in learning: language learners’ reading comprehension and adjusting their reading rates (Oxford, 1990), and positive academic learning experience and motivation (Paris & Winograd, 1990). More recently, researchers have pointed out more specific results of metacognitive reading strategies. Metacognitive reading strategies can enhance learners’ achievements by becoming aware of their own ideas and experiences and by activating effective problem-solving strategies (Israel, Bauserman, & Kinnucan-Welsch, 2005); metacognitive reading strategies can help language learners to better comprehend texts. In other words, awareness and monitoring of readers’ comprehension processes are critically important aspects of skilled reading (Yang, 2014). Like this, many researchers point out the significance of metacognitive knowledge and they claim that reading strategy instruction should be taught through a metacognitive approach (Walczyk, 2000). Whatever researchers’ interests are, they assert together that language learners should activate their learning by becoming aware of
their own thinking as they read, write, and by getting informed of effective metacognitive reading strategies.

2. Peer Response

The interaction and the negotiation in the peer collaboration activity was highlighted by Vygotsky’s theory of the Zone of Proximal Development (ZPD). ZPD is one of the theories that support peer collaboration, which places a greater emphasis on collaborative learning (Ferris & Hedgcock, 2005). Vygotsky’s ZPD (1978) states that social interaction is necessary for the internalization of thought and language, and therefore collaborative language learning could contribute to the negotiation and collaboration in the internalization process, which finally leads to improved language abilities (DiPardo & Freedman, 1987). The improved language abilities are grounded on ZPD as the distance between the most difficult task someone can do alone and the most difficult task someone can do with help (Mason, Harris, & Graham, 2011).

In terms of reading and writing, ZPD explains why and how the students’ writing skill can be developed through peer feedback. While having peer feedback, students can read their peers’ writings, as well as writing their own papers. In reading their peers’ papers, they become aware of the position of audience and this awareness makes them to be critical readers (Rollinson, 2005). Besides, responses given by the student–reader can support the student–writer to make meaningful development due to their critical awareness of writing and reading (Clark, 2003). In short, peer responses can help students’ development as the writer and the reader at the same time (Kurt & Atay, 2007). In this study, the term ‘peer response’ is preferred by the researcher to investigate how students’ reading strategies are enriched through interacting each other about their writing products.

Another rationale of peer response is based on the paradigm shift in writing: the change from emphasis on product to emphasis on process (Dyson & Freedman, 2002). This view of writing in progress admits an active feature of writing which values what writers do as they write, not just what writers produce (Dyson & Freedman, 2002). It is in line with the social
aspects of writing and learning to write. Other researchers stated that the process of peer response leads to development in the writer’s sense of audience, voice, and power in the language of L2 children. The collaboration of peer response enables students to develop critical thinking more effectively than students working individually on the same task. Peer feedback can increase students’ awareness of their mistakes between the higher and lower level of interlocutor (Prater & Bermudez, 1993). In Clark’s study (2003), writing is even better when it is to be read by their peers than when they are written to be read by teacher.

Parallel to this theoretical framework, many researchers have investigated what occurs during peer collaboration sessions. Peer response groups “provide the writer with an immediate account of the dynamics of reader–text interaction” (Gere & Stevens, 1985, p. 104). According to Lee (2009), peer feedback activities tend to generate more comments on the content, organization, and vocabulary. This result indicates that peer feedback is not limited to corrections on peer’s writing, but it is more about interaction, suggestion, and negotiation to generate meaningful opinions toward another student’s writing. Given this point, peer feedback could allow students to make negotiation of their strength and weakness (Hyland, 2004) through exchanging their ideas, comments, corrections, and suggestions, which provides opportunities for the students to be better in writing and also reading (Jiao, 2007; Kamimura, 2006).

Based on the above theoretical frame, this study is to investigate how the peer response works in improving learners’ metacognitive reading strategies (Jiao, 2007; Kamimura, 2006).

III. METHODOLOGY

1. Sites

This study was conducted in a special program in which the researcher was involved in teaching high school students for the winter vacation under a special project supported from the administration for local autonomy.
purpose of this program was to increase students’ awareness of how to study Math and English. The English program was held across 10 days that consisted mainly of reading and writing, and each day was composed of three 50-minute sessions. The participants in this study were 60 high school students in the 10th grade from various schools. The 60 students were divided into two classes with each class having 30 students whose English competencies varied. When grouping classes, after the placement test, the main focus was to distribute advanced, medium, low level students equally in the same class.

In the reading class, students were required to comprehend the meaning of the main story, and to write about the issues dealt with in the main readings as a warm-up or post-reading activity. In sum, students read the textbook, Reading Explorer 1 published by National Geographic Learning in 2015, and they explored 4 topics such as Amazing Animals, The Power of Music, Into Space, and Stories and Storytellers. For this investigation, the researcher as a teacher prepared a form and a rubric to help students doing peer feedback (Appendix 1). The feedback form was designed to promote interaction with each other discussing questions in regards to the clarity of the idea, the completeness of the elements, and the schematic structures of the writing.

2. Process

Class A as a control group was asked to write, without peer collaboration, their responses to issues discussed in the main reading. These students subsequently received feedback from a teacher. In the last 50 minutes class, students revised their writings following the teacher feedback. Class B as an experimental group was required to write, with peer collaboration, their responses to issues discussed in the main reading, and then was to exchange their feedbacks to their peers’ writings and discussed to clarify their ideas. In three 50 minutes class, 50 minutes were allotted to peer responses, and after the peer activity, the teacher collected their writings and gave feedback of each product.

On the first session, the teacher explained to both classes the scheme of academic writing including content, organization, word choice, grammar, and
authentic ownership. Both classes also received a rubric for measuring the overall quality of the paper. This holistic scoring rubric was used to increase students’ awareness of writing by being involved with the concept of audience, purpose, content, organization, and language use. Students were then asked to apply this guideline to their own writings. However, only the experimental group—class B was introduced to the concept of peer collaboration and peer response activity. Students of Class B were in groups of 4 to 5 members for peer response activity. To help students for this activity, the teacher gave them some questions to prompt interaction with each other as they reviewed their drafts.

These questions are based on meaning-based feedback to ask how writers explore ideas to choose and then decide which ones to incorporate into their organizing ideas. They read their group members’ drafts and made their responses. Feedback given by peers could be spoken or written feedback. This research focuses on the written feedback given by peers to improve their writing, especially narrative writing. Written peer feedback was given in form of marks, written comments, written correction, and there was a form provided for students to give more suggestions. Students then revised their drafts based on the discussions after the peer response in class. Students of Class A, however, revised individually. A narrative text, as well as other text types, should be written in a process oriented scheme where peer feedback activities can take place. Generally, peer feedback might be useful to enhance students’ awareness on the grammatical mistakes and mechanical mistakes.

For the example, a narrative that tells a story in the past necessitates mostly past tense (Feez & Joyce, 2002). Students not aware of this aspect might use inappropriate tenses in their narrative, and peer feedback can stimulate their awareness on this kind of mistake. Mechanically, the correct use of punctuation in the (narrative) writing is also important to shape the meaning; here peer feedback may generate correction when the mistakes are observed by the students. Specifically, peer feedback is useful to develop the idea, content, clarity, mechanics, and the organization of the students’ narrative writing (Clark, 2003).
3. Data Collection and Analysis

This research employed a self-report measure, the Meta-cognitive Awareness of Reading Strategies Inventory (MARSI). MARSI was developed by Sheorey and Mokhtari (2001) to assess students’ metacognitive awareness and their perceived use of reading strategies while reading academic or school-related materials. As a quantitative questionnaire, it provides a valid and reliable instrument aimed at measuring readers’ meta-cognitive awareness (Sheorey & Mokhtari, 2001). This questionnaire was influenced from Rosenblatt’s (1978) reader response theory which emphasized the interaction between readers and the text. This self-report instrument asks how readers consider and perceive their reading strategies. In other words, this questionnaire reveals how readers plan, monitor, evaluate and use information when they comprehend their reading contexts. It is said that students’ reflections could follow the readers’ thinking processes as descriptions of metacognition (Sheorey & Mokhtari, 2001).

MARSI was originally performed using three factors (Global Reading Strategies, Problem-Solving Strategies, and Support Reading Strategies) and its reliability for the total 30 entries of the questionnaire was .89 (Sheorey & Mokhtari, 2001). However, in this study, MARSI was modified to 24 entries for high school students. In this revised MARSI, the first factor (Global Reading Strategies) had 10 items representing a set of reading strategies oriented toward a global analysis of text. The second factor (Problem-Solving Strategies) includes 6 items that were around strategies for solving problems when readers encountered difficulty in reading. As the third factor, Support Reading Strategies of 8 items involved practical strategies such as reference materials, taking notes, that were used as functional or support strategies.

On the first day of class, students in both classes were introduced to a strategic learning approach which was employed through reading texts and they were required to mark on each entry, reflecting their attitudes toward metacognitive reading strategies. After completing the program, students were required again to rate the same questionnaire—how often they used the
reading strategy described in that statement using a 5-point Likert-type scale ranging from 1 (I never do this) to 5 (I always do this). The SPSS 16 program was used to analyze the data.

IV. FINDING

Investigating this study, the quantitative questionnaire test (MARSI) was conducted twice before and after this English reading program. An independent-samples t-test (Table 1) was conducted to compare class A (control group) with class B (experimental group) in the pre-test. After analyzing the T-test for equality of means for all question items between Class A and Class B, the result shows that there was not a statistically significant difference in both groups except the question number 3 (global strategy- I think about what I know to help me understand what I read.) and questions number 7 (global strategy- I think about whether the content of the text fits my reading.) The p-values of 22 questions out of total 24 are greater than 0.05 (p<0.05), while question 2 and question 7 showed a statistically significant difference: question 2 in Class A (M=3.10, SD=1.155) and Class B (M =2.47, SD=1.074), condition: t(58)=2, p=0.032; question 2 in Class A (M=2.50, SD=1.225) and Class B(M=1.80, SD=.761), conditions; t(58)=2.658, p=0.011.

<table>
<thead>
<tr>
<th>Question</th>
<th>Levene’s Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
<td>t</td>
</tr>
<tr>
<td>Q 3 (pre)</td>
<td>Equal variances assumed</td>
<td>.119</td>
<td>.732</td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>2.199</td>
<td>57.697</td>
</tr>
</tbody>
</table>

Improving reading strategies through peer response 11
As the statistical results (Appendix 2 & 3) show, both groups increase the means score of MARSI. This result shows that the experimental group used relatively fewer metacognitive reading strategies than control group before being involved in this research, but after this program, the experimental group employed more metacognitive reading strategies than control group in this investigation.

The following <Table 2> shows that the control group has 10 items showing a significantly big difference in pre and post test.

<table>
<thead>
<tr>
<th>Group = Control</th>
<th>Paired Samples Test<sup>a</sup></th>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 7 (pre)</td>
<td>Equal variances assumed 8.42</td>
<td>.005 2.659 58 .010</td>
<td>.700 .263 .173 1.227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equal variances not assumed</td>
<td>2.659 48.493 .011</td>
<td>.700 .263 .171 1.229</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q 2. I take notes while reading to help me understand what I read.
Q 6. I summarize what I read to reflect on important information in the text.
Q 7. I think about whether the content of the text fits my reading purpose.
Q 10. I skim the text first by noting characteristics like length and organization.
Q 11. I try to get back on track when I lose concentration.
Q 14. I decide what to read closely and what to ignore.
Q 18. I stop from time to time and think about what I’m reading.
Q 19. I use context clues to help me better understand what I’m reading.
Q 20. I paraphrase (restate ideas in my own words) to better understand what I read.
Q 21. I try to picture or visualize information to help me remember what I read.

Explaining some questions in more detail, Question 2 in control group “I take notes while reading to help me understand what I read,” showed a significant difference: pre-test (M=1.57, SD=.728); for post-test (2.10, SD=1.062); t(29)=-3.117, p=.004. Question 6 “I summarize what I read to reflect on important information in the text” also showed a significant difference (pre-test: M=2.00, SD=.788; post-test: M=3.23, SD=.728; t(29)=-9.280, p=.000). Question 7 “I think about whether the content of the text fits my reading purpose” (pre-test; M=2.50, SD=1.225; post-test; M=2.87, SD=1.137; t(29)=-2.362, p=.025). Question 10 “I skim the text first by noting characteristics like length and organization” (pre-test: M=3.00, SD=1.145; post-test; M=3.50, SD=1.137; t(29)=-3.042, p=0.05).

However, the following <Table 3> indicates that the experimental group has 16 items that significantly increased in the post-test.

<Table 3> Paired Sample Test of Experimental Group

<table>
<thead>
<tr>
<th>Group=Experimental</th>
<th>Paired Samples Test<sup>a</sup></th>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Mean</td>
<td>Std. Error of Mean</td>
<td>Lower</td>
</tr>
<tr>
<td>Q 1 GLOB1(pre) - GLOB1(post)</td>
<td>-.433</td>
<td>.935</td>
<td>.171</td>
<td>-.783</td>
</tr>
<tr>
<td>Q 2 SUP1(pre) - SUP1(post)</td>
<td>-.733</td>
<td>1.172</td>
<td>.214</td>
<td>-1.171</td>
</tr>
<tr>
<td>Q 3 GLOB2(pre) - GLOB2(post)</td>
<td>-.633</td>
<td>.890</td>
<td>.162</td>
<td>-.966</td>
</tr>
<tr>
<td>Q 6 SUP3(pre) - SUP3(post)</td>
<td>-1.367</td>
<td>.999</td>
<td>.182</td>
<td>-1.740</td>
</tr>
<tr>
<td>Q 7 GLOB4(pre) - GLOB4(post)</td>
<td>-.900</td>
<td>.803</td>
<td>.147</td>
<td>-1.200</td>
</tr>
<tr>
<td>Q 9 SUP4(pre) - SUP4(post)</td>
<td>-2.067</td>
<td>1.048</td>
<td>.191</td>
<td>-2.458</td>
</tr>
</tbody>
</table>

Improving reading strategies through peer response 13
Q 1. I have a purpose in mind when I read.
Q 2. I take notes while reading to help me understand what I read.
Q 3. I think about what I know to help me understand what I read.
Q 6. I summarize what I read to reflect on important information in the text.
Q 7. I think about whether the content of the text fits my reading purpose.
Q 9. I discuss what I read with others to check my understanding.
Q 14. I decide what to read closely and what to ignore.
Q 16. When the text becomes difficult, I pay closer attention to what I’m reading.
Q 17. I use tables, figures, and pictures in the text to increase my understanding.
Q 18. I stop from time to time and think about what I’m reading.
Q 19. I use context clues to help me better understand what I’m reading.
Q 20. I paraphrase (restate ideas in my own words) to better understand what I read.
Q 21. I try to picture or visualize information to help me remember what I read.
Q 22. I use typographical aids like boldface and italics to identify key information.
Q 23. I critically analyze and evaluate the information presented in the text.
Q 24. I go back and forth in the text to find relationships among ideas in it.

Here, the above results are discussed in more detailed. First, Question 1, 3, 7, 16, 17, 22, 23, and 24 were ranked as the most used strategies in the experimental group, but Question 10 and 11 as the most used strategies in the control group were not listed in the experimental group as the most used strategies. Question number 1 ‘I have a purpose in mind when I read’ in experimental group showed a statistically significant difference: (pre-test: M=2.30, SD=1.022; post-test: M=2.73, SD=.868; t(29)=-2.538, p=0.17); Question 3 ‘I think about what I know to help me understand what I read’ (pre-test: M=2.93, SD=1.081; post-test: M=3.10, SD=.803; t(29)=-3.898,
Improving reading strategies through peer response

Improving reading strategies through peer response

p=0.01); Question 7 ‘I think about whether the content of the text fits my reading purpose’ (pre-test: M=2.87, SD=1.137; post-test: M=2.70, SD=.877; t(29)=-6.139, p=0.000); Question 16 ‘When the text becomes difficult, I pay closer attention to what I’m reading’ (pre-test: M=3.27, SD=.944; post-test: M=3.80, SD=.925; t(29)=-4.805, p=0.000); Question 17 ‘I use tables, figures, and pictures in the text to increase my understanding’ (pre-test: M=3.73, SD=.947; post-test: M=3.60, SD=1.003; t(29)=-3.067, p=0.005); Question 22 ‘I use typographical aids like boldface and italics to identify key information’ (pre-test: M=2.83, SD=.791; post-test: M=3.00, SD=.947; t(29)=-3.434, p=0.002).

Next, as the most noticeable statistical result, the following two strategies were used in the experimental group: Question 23 ‘I critically analyze and evaluate the information presented in the text’ (pre-test: M=1.80, SD=.407; post-test: M=3.50, SD=.861; t(29)=-12.104, p=0.000); Question 24 ‘I go back and forth in the text to find relationships among ideas in it’ (pre-test: M=3.20, SD=.805; post-test: M=3.50, SD=.731; t(29)=-3.294, p=0.003).

V. DISCUSSION AND CONCLUSION

This research investigated how peer responses worked to improve students’ metacognitive reading strategy. As a conclusion, the following reading strategies were increased through the peer response process using writing as a product: I have a purpose in mind when I read; I think about what I know to help me understand what I read; When the text becomes difficult, I pay closer attention to what I’m reading; I use tables, figures, and pictures in the text to increase my understanding; I critically analyze and evaluate the information presented in the text; I go back and forth in the text to find relationships among ideas in it.

The findings of this study revealed that the peer response group employed more metacognitive reading strategies than the non-peer response group, which indicated peer response played an important role in enriching reading strategies. In other words, Korean high school students were allowed
opportunities to explore and experiment with effective reading strategies in English writing and reading practice, through which they came to improve their metacognitive reading strategies. Here, this study discusses some significant issues emerging from this result.

First, the fact that the peer response group used more metacognitive reading strategies can be explained by students’ interactions. When they interacted with each other to clarify their writings through asking and answering, they discussed naturally the main topic, intention, and meaning of the passage. At the same time, they tried to analyze critically and evaluate their peers’ writings as the reader. This process could stimulate not only students’ awareness of their faulty or insufficient writing skills, but also their reading strategies. This attitude naturally led to identifying, monitoring, and engaging their reading and writing process, which are the main aspects of metacognitive reading strategies (강동호, 2012). This self-awareness provided a chance to reflect on their writings through reading their peers’ drafts, which could link to metacognitive reading strategies. It means that peer feedback does not merely give chance to comment or correct peer’s drafts, but it also provides opportunities that students need to apply metacognitive reading strategies naturally through the process of peer responses. This process seems to makes the students more critical on their own reading. This proves what Rollinson (2005) stated that peer feedback also trains students to be critical reader on their own writing.

Considering learning is a process, this peer response approach deals with interaction and cooperation to negotiate, discuss, persuade and communicate (Kim, 2014). In sum, peer collaboration can engage language learners in a collaborative environment rather than a teacher-directed approach in class. Instead of receiving prescriptive comments from teachers, peers would interact with one another’s writing as readers, and challenge and negotiate meaning during their cooperation (Prater & Bermudez, 1993). Accordingly, this interaction improves language students’ reading skills. This point is also in line with Vygotsky’s ZPD concept. That is, students in this study interacted with each other about the products their peers made. This interaction can be explored in the perspective of sociocultural aspect. When the students were asked to write with a sense that it would be read by an
authentic audience of peers, they came to seek for more efficient strategies to organize and develop their ideas clearly. Furthermore, they wanted to make the reader satisfied by clarifying their ideas and giving their own voice about the topic.

Second, this study can be evidence that strategies can be taught in class. The interactions between writing and reading can be implemented in a real classroom to enhance reading strategies. This research method can give the learners the opportunity to develop their metacognitive reading skills when they need to write and read. A teacher should encourage students’ interest, enjoyment, and motivation to study (Graham, Gillespie & McKeown, 2013). The reading strategies will help students place the developmental stages of metacognition into perspective with appropriate strategies. Language learners need to learn when to use various metacognitive processes which make them aware of their learning processes and monitor their cognitive processes. In this study, peer response activities were used to explore students’ metacognitive reading strategies. Through interacting their responses, students can reflect on their thinking process, which leads to metacognitive reading strategies consciously and unconsciously. This result is hoped to support the fact that language learners come to have more responsibility for their studies by generating, applying and monitoring effective strategies while interacting each other, which is the argument of this investigation.

REFERENCES

Sheorey, R., & K. Mokhtari, (2001). Differences in the metacognitive

Appendix 1: Peer response sheet for a meaning based feedback (Hansen & Liu, 2005)

Name of writer:
Name of reader:
1) What did you like best about my paper? Why?
2) Was it clear from the topic sentence what the problem was?
 If not, what needs to be changed to make it clear?
3) Were all solutions relevant? Were they well supported?
 Where can I add more details and support?
4) Was the order of the solutions logical and effective?
 How can I reorganize them to make it more effective?
5) What transition words or phrases were needed to be added (or omitted) to help you follow the paper better?
6) I have difficulty with _______________.
 Please help me find any errors with this.

Appendix 2 (Paired Sample Statistics of Control Group)

<table>
<thead>
<tr>
<th>Pair</th>
<th>GLOB1(pre)</th>
<th>GLOB1(post)</th>
<th>SUP1(pre)</th>
<th>SUP1(post)</th>
<th>GLOB2(pre)</th>
<th>GLOB2(post)</th>
<th>GLOB3(pre)</th>
<th>GLOB3(post)</th>
<th>SUP2(pre)</th>
<th>SUP2(post)</th>
<th>SUP3(pre)</th>
<th>SUP3(post)</th>
<th>GLOB4(pre)</th>
<th>GLOB4(post)</th>
<th>GLOB5(pre)</th>
<th>GLOB5(post)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.70</td>
<td>2.93</td>
<td>1.57</td>
<td>2.10</td>
<td>3.10</td>
<td>2.93</td>
<td>2.90</td>
<td>3.07</td>
<td>2.77</td>
<td>2.90</td>
<td>2.00</td>
<td>3.23</td>
<td>2.50</td>
<td>2.87</td>
<td>3.00</td>
<td>3.50</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>.988</td>
<td>.907</td>
<td>.728</td>
<td>1.062</td>
<td>1.155</td>
<td>1.081</td>
<td>.960</td>
<td>1.112</td>
<td>1.223</td>
<td>1.062</td>
<td>.788</td>
<td>.728</td>
<td>1.225</td>
<td>1.137</td>
<td>1.145</td>
<td>1.137</td>
</tr>
<tr>
<td>Std. Error Mean</td>
<td>.180</td>
<td>.166</td>
<td>.133</td>
<td>.194</td>
<td>.211</td>
<td>.197</td>
<td>.175</td>
<td>.203</td>
<td>.223</td>
<td>.194</td>
<td>.144</td>
<td>.133</td>
<td>.224</td>
<td>.208</td>
<td>.209</td>
<td>.208</td>
</tr>
</tbody>
</table>
Appendix 3 (Paired Sample Statistics of Experimental Group)

<table>
<thead>
<tr>
<th>Pair</th>
<th>Variable (pre)</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLOB1</td>
<td>2.30</td>
<td>30</td>
<td>1.022</td>
<td>.187</td>
</tr>
<tr>
<td></td>
<td>GLOB1 (post)</td>
<td>2.73</td>
<td>30</td>
<td>.868</td>
<td>.159</td>
</tr>
<tr>
<td>2</td>
<td>SUP1 (pre)</td>
<td>1.60</td>
<td>30</td>
<td>.894</td>
<td>.163</td>
</tr>
<tr>
<td></td>
<td>SUP1 (post)</td>
<td>2.33</td>
<td>30</td>
<td>.922</td>
<td>.168</td>
</tr>
<tr>
<td>3</td>
<td>GLOB2 (pre)</td>
<td>2.47</td>
<td>30</td>
<td>1.074</td>
<td>.196</td>
</tr>
<tr>
<td></td>
<td>GLOB2 (post)</td>
<td>3.10</td>
<td>30</td>
<td>.803</td>
<td>.147</td>
</tr>
<tr>
<td>4</td>
<td>GLOB3 (pre)</td>
<td>3.07</td>
<td>30</td>
<td>1.048</td>
<td>.191</td>
</tr>
<tr>
<td></td>
<td>GLOB3 (post)</td>
<td>3.30</td>
<td>30</td>
<td>.915</td>
<td>.167</td>
</tr>
<tr>
<td>5</td>
<td>SUP2 (pre)</td>
<td>2.23</td>
<td>30</td>
<td>1.331</td>
<td>.243</td>
</tr>
<tr>
<td></td>
<td>SUP2 (post)</td>
<td>2.40</td>
<td>30</td>
<td>1.354</td>
<td>.247</td>
</tr>
<tr>
<td>Pair</td>
<td>SUP3 (pre)</td>
<td>SUP3 (post)</td>
<td>GLOB4 (pre)</td>
<td>GLOB4 (post)</td>
<td>PROB1 (pre)</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>1.67</td>
<td>3.03</td>
<td>1.80</td>
<td>2.70</td>
<td>3.07</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Group = Experimental
Examples in: English
Applicable Languages: English
Applicable Levels: Secondary
Key words: reading strategy, metacognition, peer response, interaction, negotiation

Yang, Jungwan
The Institute for Language Education and Research
Seoul National University of Science & Technology
138 Gongeung gil, Nowon-gu, Seoul 139–743, Korea
Tel: +82–2–970–7227
E-mail: forwanny@seoultech.ac.kr.

Submitted: December 10, 2015
Revised: January 1, 2016
Accepted: January 20, 2016